Edge and Boundary Topical Science Area

Boundary TSA working groups are organized around physics issues

- PSI group (Groth) 3/2/4 WG request/12wk/32 wk
 - ITER tritium inventory and carbon transport
 - ITER mirror and tile gap tests
- Heat Flux Control and Fueling (Petrie) 2/1/4
 - Puff and pump in ITER Hybrid and AT plasmas
- Transport & ELMs (Boedo) 1/0/2
 - Poloidal dependence of transport, ELM effects
- AT Divertor (Mahdavi)
 2/2/4
 - Commission new divertor in AT shape
 - Compare pumping with predictions
 - Dome shape for ITER

(Assumes no ¹³C exposure in 2006)

Argon "Puff and Pump" enrichment is greater in the closed upper divertor - ITER "dome" issue

$$f_{CORE} = (n_{Z,CORE})/(n_{e,CORE})$$
(CER) (TS)

$$f_{EXH} = (P_{Z,EXH}/(2 \times P_{D2,EXH}))$$

(Penning Gauge)

2006: Compare with and without DOME

ARGON Injection in Open Divertor

The Radiative Divertor was Successfully Applied to "Hybrid" Operation

$$\begin{aligned} P_{rad}/P_{tot} &= 0.62\\ \beta_{N} &= 2.5\\ H_{89P} &= 2.0 \end{aligned}$$

Enrichment of trace argon increased with $\Gamma_{\rm D2}$

Enrichment was relatively insensitive to $\Gamma_{\rm AR}$, with $\Gamma_{\rm D2}$ ~ constant

Direct Measurements of Recycling and Impurity Influx Compared With UEDGE Modeling are Important to Guide ITER Operation

- Deuterium neutral distribution can be explained by recycling at the divertor target plates and neutral transport into the main chamber
- Poloidal core plasma fueling profile is determined by fueling in the divertor X-point region and neutral leakage from divertor
- Carbon is produced mainly at the divertor plates and walls, due to chemical sputtering processes

2-D DIII–D Data Shows Deuterium and Carbon Emission is Predominantly From The Divertor Region

 Plan: outer midplane views, high density operation, comparison with C-Mod picture frame data

UEDGE/DEGAS2: Core Plasma is Fueled Through Divertor X-Point Region and by Divertor Neutral Leakage

2006: New midplane views to measure main chamber interaction, also probes and MiMES

¹³C tracer injection in DIII-D has proven to be remarkably revealing (ITER tritium inventory)

Low ¹³C deposition found away from divertor

- Detecting main chamber ¹³C deposition requires higher sensitivity
 - 13 C(p, γ) 14 N nuclear reaction resonance at the U. Wis. (D.G. Whyte)
 - 10X lower detection limit
 - If small poloidal sample is representative, accounts for ~1/3 of total
- ¹³C thermal oxidation facility (J.W Davis) at U. Toronto (J.W. Davis)
 - 20 tiles planned to be tested

Ion beam analysis facility University of Wisconsin

Oxidation facility University of Toronto

ELMs show Peeling-Ballooning structure and expel bursts of density at main wall

Is and Te midplane scanning probe

2006: New midplane MiMES with probe capabilities

Divertor mirror deposition is temperature sensitive (~100°)

- Diagnostic plasma facing mirrors are listed as high-priority ITPA topic
 - ITER divertor mirrors will have deposition
- Mo mirrors were exposed in the Private Flux zone of Detached ELMing H-mode discharges
 - Room temperature (6 shots, 25 s)
 - $\sim 100^{\circ}$ C (not constant) (17 shots, 70 s)

No deposits were observed on the mirrors exposed at elevated temperature!!

- Plan to repeat in 2006 with constant temperature

Deposition in tile gaps is reduced at higher temperature

- Tritium co-deposition with carbon in tile gaps is a serious potential problem for ITER
- DiMES sample with a simulated tile gap 2 mm wide and 15 mm near the detached OSP in two sets of identical L-mode discharges
- First exposure was performed at room temperature, second exposure was with sample heated to 200°C
- C:D films deposited in the gap at room temperature were of the "soft" amorphous type with D/C atomic ratio of 0.3–0.6
- Amount of co-deposited deuterium in the heated exposure was an order of magnitude lower than at room temperature
- A rather high net carbon erosion rate of 3 nm/s was measured at the sample surface in heated exposure

2006: Repeat with controlled temperature

DUST is identified as an important ITPA topic

- During dust DiMES experiments cameras with near IR filters observed individual dust particles moving with velocities of 10–100 m/s
- Direction of the dust trajectories can be explained by a combination of the ion drag, Coulomb forces, and ion pre-sheath drifts

"Statistics" being developed Thomson Scattering - 400/cubic meter, 80 nm average

Top view (DiMES TV)

Tangential divertor camera (LLNL)

Fast-framing midplane camera (UCSD)

ITER-relevant boundary studies with the new AT divertor

Flexible Divertor Studies

SN ITER shape (also DN)

ITER (scaled)

- Strike point on shelf
- Plasma sweeping for 2-D profile
- Baffle allows new views

- Either SN (ITER) or DN (AT) shapes
- New probes and views for this shape

New divertor measurements in the DN AT divertor

2 Quartz
Microbalances

(Real time deposition)

 High spatial resolution Langmuir probes in AT strike point region

 $(n_{e'} T_{e'} heat flux in shadowed areas)$

Diagnostic divertor area will have contoured tiles

ITER needs: Design Issues and ITPA tasks

Design issues that need ITPA input (Shimada, IT)

- a. Heat load on first wall, especially due to ELMs
- b. Carbon erosion/deposition/control of tritium inventory and material choice
- c. Private region PFC and necessity of Dome

ITPA High Priority Research Tasks and ITPA/IEA Experiments 2005-6

- d. Understand the effect of ELM/disruptions and first wall structures
- e. Improve understanding of Tritium retention & the processes that determine it and development of efficient T removal methods
- f. Develop improved prescription of SOL perpendicular coefficients and boundary conditions for input to BPX modeling
- g. Determine life-time of plasma facing mirrors used in optical systems
- h. Development of measurement requirements for dust

Boundary TSA working groups are organized around physics issues

- PSI group (Groth) 3/2/4 WG request/12wk/32 wk
 - ITER tritium inventory and carbon transport
 - ITER mirror and tile gap tests
- Heat Flux Control and Fueling (Petrie) 2/1/4
 - Puff and pump in ITER Hybrid and AT plasmas
- Transport & ELMs (Boedo) 1/0/2
 - Poloidal dependence of transport, ELM effects
- AT Divertor (Mahdavi)
 2/2/4
 - Commission new divertor in AT shape
 - Compare pumping with predictions
 - Dome shape for ITER

(Assumes no ¹³C exposure in 2006)

DIII-D in the context of world tokamaks contributing to ITER

DIII-D

- Particle control in AT shape
- Carbon: erosion/redeposition
- ITER mirror and tile gap
- DN, divertor dome
- Simple flow diagnostics
- Modeling Data comparison

C-MOD

- High ne and power density
- Moly walls, wall coatings
- Main chamber vs. divertor particle sources
- SOL transport
- Mixed materials studies

NSTX and **MAST** - comparisons of divertor detachment & ELMs

ASDEX -U

- Extensive W
- Modeling gaps
- Impurity transport
- AT Shapes

JET

- Major Wall program
- ITER prototype
- Be/C/W

These are "icons" - not to scale

JT-60U

- **Divertor Dome**
- Carbon Walls
- Extensive flow probes
- AT Plasmas

ITER site decision provides focus for DIII-D Boundary Program

- a. Heat load on first wall, especially due to ELMs
- d. Understand the effect of ELM/disruptions and first wall structures
 Continued work with new diagnostics probes, main chamber camera
 Radiative divertor in Hybrid mode
- b. Carbon erosion/deposition/control of tritium inventory and material choice
- e. Improve understanding of Tritium retention, processes, and T removal ^{13}C experiments, DiMES, and modeling (DIVIMP, UEDGE), side lab O_2 bake
- g. Determine life-time of plasma facing mirrors used in optical systems
- h. Development of measurement requirements for dust
 - TS for dust, dust during commissioning)
- c. Private region PFC and necessity of Dome
 New divertor geometry with and without dome, SN, DN effect of drifts
- f. Develop SOL perpendicular coefficients and B.C. for input to BPX modeling Comprehensive diagnostic set compared with computational models: UEDGE, BOUT, DIVIMP, DEGAS-2, BOUT-Kinetic -- with particle drifts

